An Assessment of the Impact of Electric Vehicles on the Energy Storage Market and Associated Policy

Susanna Elks- Energy Systems Catapult

Andrew Quinn- University of Birmingham

Acknowledgments: this work was undertaken at and funded by the University of Birmingham. Susie Elks now works for the Energy Systems Catapult.

The search for flexibility

Potential Electric Vehicle Charging Patterns

Modelling Approach- Indicators of Viable Energy Storage Capacity

	Potential Revenue Streams						_	A
	Wholesale Energy Arbitrage	Balancing Mechanism	Capacity Market	Constraint Managemen t	Frequency Response	10		
Arbitrage Indicator	Х					6		
Peak Indicator	X (scarcity pricing)		X	X		4		
						2	0	20

Modelling the UK Energy System

Modelling Annual UK Demand

Modelling Electric Vehicles- Vehicle Characteristics

	Scenario							
		20	30		2050			
	TD	SP	SS	CP	TD	SP	SS	CP
EVs in the Population	30%	100%	16%	88%	6%	81%	10%	85%
Average Battery								
Capacity (kWh)	34.8	28.5	32.5	28.6	80	64	30.5	68.7
Collective EV Battery								
(TWh)	1.08	0.93	1.06	0.94	2.01	2.01	1.05	2.23
Charge Rate (kW)	5.8	4.7	5.4	4.7	13.2	10.6	5	11.3
Discharge Rate								
(kWh/100miles)	31.2	29.3	30.5	29.3	36	33.3	27.6	34.1

Modelling Electric Vehicles- Battery SoC

When an electric vehicle battery is full, the aggregate connection to the grid should decrease.

To reflect this in the model, the population of EVs was split into ~100 groups of EVS with different driving patterns.

Each group had its own collective battery, therefore once this group's battery was full it stopped charging.

Assumption- the driving distributions were realistic and sufficiently granular

Modelling Electric Vehicles- Passive and Smart Charging

Covered Components:

- Vehicle characteristics
- Annual distribution of EVs on the road
- Modelling approach to capacity grid connection

Remaining Components:

- Number of EVs connected to the grid
- Passive charging
- Smart charging

Scenario	2030				2050			
	TD	SP	SS	СР	TD	SP	SS	СР
PC	10%	10%	10%	10%	10%	10%	10%	10%
SC	43.5%	70.3%	81.5%	81.8%	5.0%	46.3%	85.7%	68.5%
V2G	46.5%	19.7%	8.5%	8.2%	85.0%	43.7%	4.3%	21.5%

Modelling Electric Vehicles- Vehicle to Grid Charging

Scenario	2030				2050			
	TD	SP	SS	СР	TD	SP	SS	СР
РС	10%	10%	10%	10%	10%	10%	10%	10%
SC	43.5%	70.3%	81.5%	81.8%	5.0%	46.3%	85.7%	68.5%
V2G	46.5%	19.7%	8.5%	8.2%	85.0%	43.7%	4.3%	21.5%

V2G Set-Up	Description	Proportion PC, SC and V2G	Percentage of the year V2G does not discharge to the grid		
			2030	2050	
1	20% battery discharge each day, less than half the day max.	'Realistic Proportions'	71.3% to 93.5%	61.5% to 84.5%	
2	Annual threshold; 50% battery discharge on max day, less than half the day max.	'Realistic Proportions'	95.7% to 99.5%	85.9% to 98.8%	
3	10% battery discharge each day, less than half the day max.	'Realistic Proportions'	79.3% to 95.4%	61.7% to 87.7%	
4	20% battery discharge each day, less than half the day max.	0.1,0.05,0.85	64.1% to 82.4%	54%	
5	Annual threshold; 50% battery discharge on max day, less than half the day max.	0.1,0.05,0.85	93.1% to 98.1%	80.3% to 87.3%	

Results- Potential Impact on Revenue Streams

	Potential Revenue Streams							A
	Wholesale Energy Arbitrage	Balancing Mechanism	Capacity Market	Constraint Management	Frequency Response	10	-	
Arbitrage Indicator	Х					8		
Peak Indicator	X (scarcity pricing)		X	X		4		
						2	0	20

Results: Arbitrage Potential

	2030		2050		
	Annual	Daily	Annual	Daily	
Passive to Smart					
	3.7% to 19%	5.5% to 28.2%	43.9% to 49.2%	61.1% to 72.8%	
Passive to V2G Set-Up 1				63.8%	
	3.9% to 29%	5.8% to 42.9%	45.9% to 57.6%	to100.8%	
Passive to V2G Set-Up 2					
	3.7% to 20.4%	5.5% to 29.3%	44.2% to 53.9%	61.4% to 88.4%	
Smart to V2G Set-Up 1					
	0.2% to 9.9%	0.3% to 14.6%	1.9% to 11.3%	2.7% to 32%	
Smart to V2G Set-Up 2					
	0% to 1.4%	0% to 1%	0.2% to 4.7%	0.3% to 15.5%	

Points:

- Smart charging has significant impact
- Price differentials and volume altered
- Substantial uncertainty around the impact of V2Gpotentially conservative assumptions
- Much larger impact on daily than annual

Results: Peak Demand Impact

	2030	2050
Passive to Smart	0.7% to 4.7%	11.3% to 15.3%
Passive to V2G Set-Up 1	1.1% to 9.2%	13.1% to 26.1%
Passive to V2G Set-Up 2	1.2% to 10.7%	14% to 38.9%
Smart to V2G Set-Up 1	0.3% to 4.4%	1.3% to 10.8%
Smart to V2G Set-Up 2	0.4% to 5.9%	2.6% to 23.6%

Points:

- Smart charging has significant impact
- Substantial uncertainty around the impact of V2G -potentially conservative assumptions
- Importantly, V2G has the additional potential to reduce peak demand

Results: Impact on Revenue Streams

	Potential Revenue Streams							
	Wholesale Energy	Balancing	Capacity	Constraint	Frequency			
	Arbitrage	Mechanism	Market	Management	Response			
РС		Difficult to	Increase peak by 12%-17% by		Likely to increase			
	26% to 32.3%*	predict load	2050	fluctuations				
SC		Potential	Increase peak by 1% to 1.4%		National Grid			
	-40.5% to -35%*	supplier			(2015) found			
V2G		management	Reduce peak by 0% to 22.2%		could provide			
					52% in 2030			
					(medium EV			
	-71.6% to -35.4%*				uptake scenario)			

*just the available volume reduction, not considering price differential reduction

Policy Implications

Resultant **uncertainty** in future ESS revenue and profit Reduction in investment and increased cost of capital.

х

X

Impact on technology and industry maturity

The uncertainty arises from:

- Unknown EV take-up
- Unknown EV charging preferences
- Unknown V2G profitable operation
- Potential widespread rapid charging
- Disruptive transport business models
- The potential transition

Policy Implications

The case for maintain optionality:

• Flexibility is key to achieving major policy aims -

• Uncertainty over future EV capability

• EVs may not deliver assured system security

Resulting Recommendations

Government must work to provide **market stability** for energy storage systems.

Reducing investment risk:

- Clear **policy roadmap** on EV charging
- Trials which show consumer preferences and reaction to incentives
- Market stability mechanisms for low carbon flexibility

Resulting Recommendations

Government must work to provide **market stability** for energy storage systems.

Reducing investment risk:

- Clear **policy roadmap** on EV charging
- Trials which show consumer preferences and reaction to incentives
- Market stability mechanisms for low carbon flexibility

Resulting Recommendations

Government must work to provide **market stability** for energy storage systems.

Reducing investment risk:

- Clear **policy roadmap** on EV charging
- Trials which show consumer preferences and reaction to incentives
- Market stability mechanisms for low carbon flexibility

Conclusion

- Large variety of potential impacts from EV charging.
- Could prevent investment and optimal deployment of energy storage systems.
- Recommendation- To maintain optionality government must work to provide market stability for ESSs.

Thank you for listening

Susanna Elks- Energy Systems Catapult Andrew Quinn- University of Birmingham

UNIVERSITY^{of} BIRMINGHAM

© 2019 Energy Systems Catapult 22